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Abstract

Speculative Decoding (SD) ensures that the output matches the target model’s
distribution exactly. However, we argue that this distribution matching requirement
is too stringent and results in unnecessarily low acceptance rates, limiting potential
speedups. Instead, we advocate a reformulation of the decoding objective: the
proposed decoding strategy should match the expected utility, i.e., the task-specific
performance, of the target model. This perspective also aligns better with real-
world use cases of LLMs, where utility (e.g., code correctness, factual accuracy) is
often more important than sampling distribution. Based on this reformulation, we
propose a novel decoding strategy: Pivot-Aware Speculative Decoding, which
rejects only those tokens that would lead to a utility drop in the final output. We
refer to these critical tokens as pivot tokens. We propose a method for labeling
tokens as pivotal or non-pivotal and train a lightweight classifier to detect them.
This method can be viewed as a relaxed version of standard SD, which offers much
higher acceptance while preserving utility. We evaluate our method across various
datasets, demonstrating that we can achieve up to 2.5x speedup with comparable
utility. Source code is available at https://github.com/amir-zsh/PAD.

1 Introduction

While LLMs demonstrate impressive performance in many domains OpenAl|[2023]], they also come
with a major drawback: slow text generation. LLMs typically follow an auto-regressive structure,
generating one token at a time in a sequential manner. This sequential nature significantly slows down
generation, especially as model size increases. Speculative Decoding (SD) Leviathan et al.| [2023]],
Chen et al|[2023]] addresses this bottleneck by leveraging a small, fast draft model alongside the large
target model. Specifically, the draft model first generates a sequence of IV tokens. Then, the target
model verifies these NV tokens in parallel by computing the acceptance probability as the ratio of the
sampling probabilities of N tokens assigned by the target and draft models. This parallel verification
allows the target model to skip sequential generation for accepted tokens, which leads to substantial
speedups, which is roughly proportional to the fraction of tokens accepted. Importantly, acceptance
based on sampling probability ratios allows SD to preserve the original sampling distribution of the
target model, meaning that SD’s output matches that of the target model.

Although SD guarantees an equivalent sampling distribution to the target model, its speedup is
often limited by the low acceptance rate of draft tokens imposed by this strict distribution-matching
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requirement. Recent works attempt to mitigate this low-acceptance rate limitation through various
strategies, such as aligning the draft model’s sampling distribution more closely with the target
model |Zhou et al.|[2024], or employing heuristics like rejecting only hallucinated, low-quality tokens
Bachmann et al.| [2025]].

In contrast to existing approaches, we advocate
reformulating SD to prioritize what matters most
in the practlcal u;e of LLMs: their qown.s,tream Question: An agricultural cooperative must ship 6500 kg of
pel’fOI’maHCG, or in other words, their utlllty- In potatoes. During transport by truck, 150 kg are damaged and
most real-world use cases of LLMs, the exact therefore cannot be sold. The potatoes are distributed in 50
robability distribution is often irrel at com kg bags, each bag being sold for $72. What will the sale of
probability distribution is ofte i elevant com- the potatoes bring?
pared to ensuring that the model’s outputs serve

the end task effectively, which is to achieve high Model Output:
T3 3 iq inet : To find the sale of the potatoes:
utlhty'. MOtlvated by this lnS.lght’ we mOdlfy 1. Calculate the total weight of potatoes that can be sold:
the objective of SD such that, instead of requir- $6500 - 150 = 6350 $ kg.
ing the proposed decoding to match the target Z%BCulcululc the numl;er of bags:
s : * : . 6350 + 50 = 127 $ bags.
model’s samphng dlStrlbuthl’l, we aim for the 3. Calculate the total revenue from selling the potatoes:

proposed decoding to match the expected utility $127 x 72= 92144 §.

of the target model’s outputs. Final Answer: 9144

\ J/

Following this reformulation, we propose Pivot-
Aware Speculative Decoding, a decoding strat-
egy that rejects only the tokens whose generation
would lead to a utility drop in the final output
of the target model. We name these critical to-
kens as pivot tokens as shown in Figure|l|and
train a lightweight classifier to identify them
effectively. This approach enables significant
speedups without sacrificing utility, arguably
the most important metric in many real-world tasks. Since utility is definable across a wide range of
tasks, our method results in a generic and extensible decoding algorithm.

Figure 1: To match the target model’s distribution,
SD rejects many tokens that a draft model pro-
poses (shown in blue). Most of these rejections are
unnecessary, and fixing a single token (2 — 1) is
enough to recover the correct answer.

2 Preliminaries

A language model defines a distribution p(x) over token sequences x = (z1, ..., z;) € V¥, factor-
ized autoregressively:

k
p(x) = Hp(ﬂ?t | x<t),
t=1
where x; is the prefix up to £ — 1. Given a context x., the model generates an output sequence

vy ~ p(- | X.) token by token, which is slow for large models.

Speculative Decoding (SD) accelerates sampling from a target model parge; using a smaller draft
model pyri. At position ¢, the draft proposes a block of ~y tokens,
Xt:itdy—1 pdrafl(' | X<t)7

which are verified in parallel by prree. Each proposed token x4, 0 < @ < v, is accepted with

probability
areet(Ti4i | X<tri
min <17 ptdrget( t+ | <t+z)) )
pdraft(xt+7i | X<t+i)
If all ~y tokens are accepted, an additional token ;- is sampled from pieer. If some x4y is rejected,
a replacement is drawn from

p/(x ‘ x<t+i) = norm(max(07 Drarget — pdraft)) 5
ensuring the overall sampling distribution equals pyge; [Leviathan et al., 2023, |Chen et al., 2023]].

Let 7 € [0,7] be the average acceptance length per draft block (expected number of consecutively
accepted draft tokens before a rejection or block end), and define the draft acceptance ratio

n = Te [0,1].
Y
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Figure 2: Pivot-Aware Speculative Decoding (PAD). (a) Dataset generation: label SD-rejected draft
tokens via target-model rollouts with an LLM-as-judge sanity check; (b) Training: fit a pivot classifier
on target-side features (layer-¢ hidden states, logits, entropy); (c) Inference: accept tokens if standard
SD accepts them, or if the classifier predicts non-pivot.

Let tgrare and tiareer denote the wall-clock time for one forward pass of the draft and target models,
respectively. One SD block costs

TSD =~ Y tdrafl + ttarge[
—— ~——
draft proposes one parallel verify (+1) pass

In expectation, that block yields ny + 1 target tokens (the 1~y accepted proposals plus the extra +1
when the block fully accepts). By contrast, sampling from the target alone would take (177 + 1) target
time to produce the same number of tokens. Hence the expected speedup is

Speedup ~ (7]7 + 1) tlarget
Y taraft + ttarget

Because speedup scales with (17 + 1) in the numerator, any method that increases 7 directly yields
more accepted tokens per verify pass and higher generation speed.

3 Methodology: PAD (Pivot-Aware Speculative Decoding)

3.1 Objective: Matching Target Utility.

To improve draft token acceptance and generation speed, we propose matching the utility of the target
model rather than its sampling distribution. Utility, defined as task performance given a context or
query, can be continuous, but we adopt a binary definition for simplicity.

Definition 1 (Utility). Let x denote a query or context, and y be the language model’s output. Given
an evaluation function Eval(y, x) and a user-specified threshold 0., the utility function u(y, x) is

defined as:
. 17 ifEVCll(Z% Z‘) Z eevalv
uly,2) = {0, otherwise.

i.e. u(y,x) = 1 if the model’s output achieves the desired evaluation score; otherwise, u(y,x) = 0.
This binary formulation naturally aligns with many tasks where correctness is clearly defined, such
as programming, math, and factual question answering.

Given the definition of utility, we now aim to ensure that the proposed decoding strategy, denoted by
D, achieves an expected utility which closely matches that of the target model pareei. Let U(p,z) =
Ey p(.1x) [u(y,x)] denote the expected utility of p for context x.

Definition 2 (e-Utility preserving decoding). Suppose we are given a task or set of tasks, with inputs
X. drawn from a dataset distribution D. Then we say that p is e-utility preserving if:

EXCND [U(ﬁv xc)] Z ]ExCN’D [U(ptargeta xc)] — € (1)

where € > 0 is a user-specified small tolerance value.



It is trivial to verify that pie is utility preserving for any e. For this reason, utility preservation is a
relaxation of the original SD objective (which enforces exact distributional equivalence). In the next
section, we describe how our proposed decoding strategy can take advantage of this relaxation in a
non-trivial manner and increase the acceptance rate.

3.2 Pivot-Aware Speculative Decoding.

Our goal is to design a new decoding strategy ppap that is utility preserving as in Definition [2} To this
end, we propose an approach based on rejecting only those tokens that would lead to a utility drop in
the final output of the target model, assuming the remainder of the generation is completed by the
target model itself. We refer to such “utility-changer” tokens as pivot tokens. Formally, we define a
pivot token as follows:

Definition 3 (Pivot Token). Suppose we are given a context X., y <+ is the tokens generated before
position t, and Y, is a candidate token. 3 is a pivot token at time t if

U(ptargeta (X07 Y<t, gt)) § U(ptargeta (X07 y<t)) — € (2)

That is, g, is a pivot token if conditioning on the ¢th token being g, results in a loss of expected utility
when sampling completions (rollouts) from the target distribution. In other words, pivot tokens pivot
the generation trajectory toward lower utility outputs. Note that whether a particular token is a pivot
token depends on the query X, the output so far y ., the target distribution peyreer, and also the utility
function w.

Given a binary classifier fyivot(y, Y <¢, Xc) indicating whether g, is a pivot token, our decoding ppap
follows SD with a modified rule: if fyivoi(s, Y<¢, %) < o directly accept ¢, otherwise follow standard
SD. This modification relaxes SD’s acceptance criteria by always accepting tokens deemed not pivotal
(foivot(Jt, Y <t,X) < 0), leading to a higher token acceptance rate.

Lemma 1 (Rejecting only pivot tokens preserves utility). If fyio has 100% recall on pivot tokens
(i.e., it never labels a pivot as non-pivot), then ppap satisfies Definition 2 with ¢ = 0.

The formal proof is provided in Appendix Note that a trivial 100% recall pivot-token classifier
can be obtained by labeling all draft tokens as pivots, which reduces to standard SD with many
rejections. Classifier quality dictates the trade-off between utility preservation and speedup: better
classifiers reject fewer non-pivots, increasing efficiency while maintaining utility.

3.3 Pivot Classifier: Data and Training

Direct labeling via Definition [3]is intractable because, for each candidate token, it requires taking an
expectation over all downstream continuations. We therefore use a Monte Carlo rollout approximation
and add two safeguards to control variance and common failure modes.

Candidate harvesting. We only attempt to label tokens that standard SD would reject. Concretely,
for each x ~D and step ¢, draw a draft token ¢ ~ pgrarc (- | X, y<¢). If SD would accept 3, under its
usual verification rule, we skip it. Otherwise we mark it as a candidate and proceed to label. This
focuses the limited labeling budget on the ambiguous frontier where acceptance decisions actually
change behavior and utility.

Rollout estimate with tolerance. We let 2; = (x,y<;) and candidate §;. We aim to compute

Ubase = U(ptargeta xt); Ucand = U(plargeta (xtv gt)) .

We estimate these by generating N independent rollouts and taking the mean of the binary utility u

to obtain Uy and Ucyng. Because both are Monte Carlo estimates, small gaps can be sampling noise.
We therefore introduce a tolerance o € [0, 1] and label PIVOT iff

Ucand < anasea

and NON-PIVOT otherwise. Larger « flags smaller relative drops (higher recall, lower precision).



GSMS8k AIME24 MBPP

Setting Acc. n (%) Spd. Acc. n (%)  Spd. Acc. n (%) Spd.
Target 944106 — 1.00 73445 — 1.00 70419 — 1.00
SD 944096 453402 157 73445 472407 1.69 70419 41.8104 1.46

PAD (0'207) 93;{:1.2 77-2:t0.8 2.46 5717,8 78.8:{:0_5 2.51 64.7;{:1_7 69.1i0,7 2.25
PAD (6=0.5) 93.4109 70.840.9 2.33 61.6+53 71.6+06 2.33 68.612.3 61.7402 2.00
PAD (0’203) 93.7i141 58.2i0A2 1.95 69.6i4A2 58~3i046 1.95 68.3i4,8 50.2i0A3 1.71
Draft 74.211 5 — 3.94 12.5434 — 394 51.1413 — 3.94

Table 1: Evaluation results. Acc.: Accuracy; Spd.: speedup vs. target-only; SD: Speculative Decoding;
7: draft acceptance ratio.

LLM-as-judge sanity check (patching false negatives). Binary utility can miss harmful tokens
that “look fine” on average because later steps self-correct or exploit brittle shortcuts (e.g., reward

hacking). For candidates initially labeled NON-PIVOT, we inspect the rollouts used to estimate U ,pd,

ie., yg ~ Prarget (- | %+, §¢), and collect those with v = 1 (reached correct answer). We then select the
median-length rollout as a representative and prompt an LLM-as-judge to assess reasoning soundness
(flagging leaps or contradictions). If the judge deems the reasoning unsound, we flip the label to
PIVOT. This check only flips to PIVOT, and therefore it cannot introduce unsafe accepts.

Training (what features and objective). From each labeled instance we extract features available
at SD verification time on the farget side: (i) the layer-¢ hidden state at position ¢; (ii) the target-model
probability of the candidate token; and (iii) the entropy of the target distribution. We then train a
small MLP f;.o to predict PIVOT vs. NON-PIVOT.

Inference (how it plugs into SD). At inference, PAD runs standard SD. Whenever SD would
reject at position ¢, we query fpivor ON the target-side features. If fyivor predicts NON-PIVOT (score
< 0), we override the rejection and accept the draft token. Otherwise, we fall back to the usual SD
replacement. As an extra guardrail, we reject any token whose target-model probability is below
104, regardless of the classifier score. The incremental cost is negligible: a single MLP forward
pass on a fixed-size feature vector, which is tiny relative to target/draft transformer steps and easily
batched across positions.

See Appendix B] for dataset generation, feature extraction, the MLP architecture, and threshold
selection details.

4 Experiments

Datasets: We evaluate our approach on three tasks spanning different domains. For mathematical
reasoning, we use GSMS8K |Cobbe et al.|[2021]], a dataset of grade-school-level numerical word
problems, and AIME24 HuggingFaceH4,[2024]], which consists of problems from the 2024 American
Invitational Mathematics Examination. For code generation, we use MBPP (Mostly Basic Python
Problems) |Austin et al| [2021]], a collection of crowd-sourced Python programming tasks. For
GSME8K and MBPP, we randomly sample 200 test prompts.

Generation setting. We implement our method on top of the high-performance gpt-fast li-
brary Meta PyTorch Team|[2024]. Experiments use the Qwen3 family|Yang et al.| [2025[]: Qwen3-8B
as the target and Qwen3-0.6B as the draft. We enable thinking and use decoding parameters
temperature = 0.6, top_p = 0.95, top_k = 20. The maximum context length is 32,000 tokens and

the speculative length is v = 10. Experiments are executed on 8 x A100 GPUs.

Metrics: For all tasks, we report accuracy (pass@1). For speculative decoding—based methods (PAD
and SD), we additionally report the draft acceptance ratio 1 and speedup over target model. Metrics
are averaged over 8 completions.

Results Table [l summarizes accuracy and speedup relative to the target-only baseline. Because
SD preserves the target model’s output distribution, its accuracy matches the target’s, so we report
the same number for both. PAD introduces a tunable threshold ¢ on the pivot classifier: larger o
accepts more draft tokens (higher speedup, potentially lower accuracy), while smaller ¢ is more



conservative. On GSM8K and MBPP, PAD shifts the speed—accuracy curve outward: with larger o, it
attains substantially higher speedups (up to 2.46x versus 1.57x for SD) while retaining competitive
accuracy. For the harder AIME24 benchmark, maintaining high accuracy requires smaller o, which
reduces PAD’s speedup relative to SD (1.95x versus 1.69x). Across settings, the classifier overhead
is negligible and gains come from accepting more draft tokens and thus invoking the target model
less often.

5 Related Work

EAGLE [Li et al.|[2024]] and Medusa |Cai et al.| [2024]] introduce alternative drafting strategies by
leveraging additional decoding heads and specialized draft models, while incorporating verification
in parallel with tree attention. Another line of work focuses on designing faster draft models through
heuristics |Chen et al.| [2024], He et al.| [2024]],|Zhao et al.| [2024] or adaptive draft lengths|Liu et al.
[2025]). Others aim to improve draft quality to increase acceptance rates, for example by aligning the
draft distribution with the target/Zhou et al.|[2024]] or exploiting features of the target model Du et al.
[2024]]. These methods are orthogonal to our work, which instead emphasizes the verification phase.
Closer to our approach, some methods relax strict distribution matching to improve acceptance. Kim
et al.| [2023]] leverages token-level uncertainty, while [ Bachmann et al.| [2025]] trains a classifier to
accept or reject tokens. However, both rely on heuristic criteria rather than a principled utility-based
formulation. Moreover, Bachmann et al.| [2025]] depends on hand-crafted datasets. By contrast, we
reformulate decoding as a utility-based objective, yielding a fully self-supervised method grounded in
task performance rather than manually designed criteria. More recently, other approaches Liao et al.
[2025]], [Fu et al.| [2025]], [Pan et al.|[2025]] have proposed combining draft and target model outputs at
the step level. However, these methods depend on an auxiliary reward model or process for scoring,
which introduces additional overhead.

6 Conclusion

In this work, we proposed a novel reformulation of Speculative Decoding that focuses on preserving
the utility of the target model rather than strictly matching its sampling distribution. Specifically, we
introduced Pivot-Aware Speculative Decoding, a decoding strategy that rejects only the pivotal tokens,
referred to as pivot tokens, which are likely to lead to a utility drop in the final output. To enable this,
we trained a lightweight classifier to detect pivot tokens. Our method achieves a substantial speedup,
up to 2.51 x, while maintaining the performance and utility of the target model.
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A Technical Appendices and Supplementary Material

Technical appendices with additional results, figures, graphs and proofs may be submitted with
the paper submission before the full submission deadline (see above), or as a separate PDF in the
ZIP file below before the supplementary material deadline. There is no page limit for the technical
appendices.

A.1 Proof of Lemmal[ll

Proof of Lemmall] Let fivo(ot, Xot<,X.) be a binary classifier with 100% recall, such that it
correctly identifies all pivot tokens for any prefix x,;< and context x.. We aim to show that, for any x.,
the utility of the sampled output with any random seed s from the target model, u(Pgpe (- | Xc),Xc),
is equal to the utility of the sampled output with any random seed from the utility-aware decoding
strategy, u(pg,(- | X¢), ). This would naturally imply that the objective in Equation []is satisfied
with e = 0.

We prove this by induction.

Define a completion function Cl(Xgen, X.) With seed s which, given a partially generated token
sequence Xge and context X, returns the full sequence by completing Xgen USING Prarget, UNIESS Xgen
is already a completed sequence, in which case it returns Xg, directly.

Our goal is to show that for any generation prefix x,; produced by p,q,
U,(C:, (Xota XC)7 Xc) 2 u(pfarget(' | XC)7 XC)7 Vtv S.

If this holds at every token generation step, it follows that the final utility of utility-aware decoding is
lower bounded by that of the target model:

u(paa(- | xc),%e) > u(pilrgel(' | Xc), Xe),
since the full generation of p,4 corresponds to the final step.
Base Case: When no tokens have yet been generated, i.e., x,; = (), we have:
u(Cs(()sXe)s Xe) > u(ptsarget<' | Xc),Xe)
by the definition of the completion function C' which implies actually the equality.
Inductive Step: Assume that for some prefix x,; up to step ¢, the condition holds:
u(Cs(Xot, Xc), Xe) > u(pfargel(' | X¢), Xe).

Now consider the generation of the next token x,;41. If 2441 is accepted by p, g, it must not be
an pivot token. By the definition of pivot tokens, adding x,;41 does not decrease the final utility of
u(C(Xot, X¢ ), Xc), which is greater-equal to u(pfyger x, (* | Xc),Xc) by the inductive assumption. If
the token is rejected, it is replaced by the token sampled from py,,., Which does not decrease the
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Figure 3: ROC curve for the pivot classifier on the held-out test set.

utility due to the inductive assumption and the definition of the completion function Cy. Specifically,
we have:

u(ptsarget(' | x¢),%e) < u(Cs(Xot; Xc), Xe) < u(Cs((Tot41,Xot)s Xe)s Xe ),

where x,:41 is the next token selected by prarger With seed s. Therefore:
U(CS(X0t+17XC)) 2 u(pfarget(' | XC))'

As this proof is for any sampling with any random seed s and by induction, utility-aware decoding
produces an output with the same utility as the target model for all x., satisfying Equation [[| which is
an expectation over all possible seeds s, with € = 0.

O

B Dataset Generation and Pivot Classifier

Dataset generation. Algorithm |l|details the data collection procedure described in Section
We use the GSMSK training set|Cobbe et al.|[2021]] and generate 32619 labeled samples, with 3657
tokens labeled as pivor and 28962 as non-pivot. The target model is Qwen3-8b and the draft model is
Qwen3-0.6b. We disable “thinking” to keep rollout costs manageable. Also, « is set to 0.8. For the
soundness check, we employ Gemini-Flash-Light as the LLM-as-judge with medium reasoning
effortﬂ The prompt used for the soundness check is provided below (Prompt B.1).

Pivot classifier. We predict whether a draft token is a pivot using an MLP over the target hidden
state at layer [ (h;), token entropy H, and the target-model probability of the candidate token p. Let
s = [H, p| and define the concatenation operator & (i.e., a & b stacks vectors a and b). With ReLU
¢(+), and writing Linear(xz) = Wz + b, the model is:

u = ¢(Lineary, (h;)),

v = ¢(Linear(s)),

c=uodv,

z = Linearom(rj)(Linearfuse(c))), z € R?,
4 = softmax(z),

where Linearsg. is a standard linear layer applied to the concatenated vector c, and Lineary,; maps
the fused features to two logits (pivot / non-pivot). To address class imbalance, we train with weighted

'Gemini API; Gemini-Flash-Light


https://ai.google.dev/gemini-api

cross-entropy, split the data 80/20 into train/test, and select the checkpoint with the lowest validation
loss. The ROC curve, obtained by sweeping the decision threshold o, yields AUC = 0.865, well
above the 0.5 random baseline, indicating robust separation of pivot and non-pivot tokens across
thresholds (Fig.[3). At deployment, o can be tuned to trade off acceptance rate against target-model
fallbacks to meet a given latency/utility budget.
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Algorithm 1: Pivot Classifier Data Collection

Input:

D (prompts x), target p;, draft pg, SD_ACCEPT, SD_RESAMPLE, binary utility u,

rollouts IV, tolerance «, judge JudgelsSound, steps T’

Output: S = {(text, )} with £ € {pivot,non-pivot} (features extracted later)
1 func Rollouts(z,y4):

2 sample N completions y(™) ~ p;(- | z,y<¢);
3| return {(y™), u(y™, ), [y™))}HL,
4 func SelectRep(P):
5 sort P by sequence length /; return middle element (median length)
6 S <+ 0
7 for v ~ D do
8 | initialize prefix y.; + 0;
9 fort =1to T do
// 1) Draft proposes next token
10 sample §y ~ pa(- | T, y<t);
// 2) If SD would accept, append and move on (not a candidate)
1 if SD_ACCEPT (z, y<¢, §t, pt) then
o) | y<t+1 < (Y<t,J:); continue
// 3) Otherwise, evaluate MC utilities for base vs. candidate
13 B <Rollouts(x, y<¢); Upase < \%ﬂ > gy U
14 C +Rollouts(w, (y<t,7:)); Ucand < ﬁ > (yuyec U
// 4) Label as pivot / non-pivot (with judge check for false wins)
15 if Ucand <« Ubase then
16 | £+« pivot
17 else
18 { < non-pivot;
20 if P # () then
21 y+ +SelectRep(P);
» if = JudgelsSound (concat(z, y*)) then
23 | < pivot
// B5) Persist labeled sample for training (only when SD rejected)
24 text < concat (x7 (y<t, gjt));
25 append (text, /) to S;
// 6) Update prefix for next step per spec
26 if { = non-pivot then
27 | yetr1 < (<, Te) 5 // accepted for next step
28 else
// pivotal: fall back to SD rejection path (target-side
resampling)
29 yr < SD_RESAMPLE(x, y<¢, pt);
30 Y<t+1 < (Y<t, Yt)
31 return S ; // (run offline feature extraction next)
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Prompt B.1: Reasoning Soundness Check

You are an expert evaluator specializing in identifying flawed reasoning in
problem-solving narratives. Your task is to analyze a given response and
determine if it contains logical errors, even if the final answer is
correct.

Read the entire 'Response to Analyze' from start to finish. A response is
considered to have flawed reasoning if you identify any of the following
patterns:

- **Incorrect Intermediate Steps:** It contains calculation errors or incorrect
logical steps that are later implicitly corrected or ignored to reach the
correct final answer.

- **Logical Fallacies:** The reasoning contains leaps of logic or doesn't
coherently lead to the conclusion, but the result coincidentally matches
the correct answer.

- *xSelf-Correction:** The response states an incorrect piece of information or
result and then corrects itself. Sometimes (not always) there are explicit
phrases like "Wait, that's not right," "But the question asks for...," or "
Let's try again" before the correct path is found.

- *xUnnecessary or Redundant Steps:** It includes steps or calculations that are

irrelevant and do not contribute to the final answer, indicating a
confused or inefficient thought process.

- **0ther Reasoning Flaws:** Any other type of faulty logic that raises
questions about the soundness of the process.

### xxExamples**
**xEXAMPLE 1: FLAWED REASONING (Self-Correction)x**

* *xQuestion:** A bat and a ball cost \$1.10 in total. The bat costs \$1.00 more

than the ball. How much does the ball cost?

* x*Response to Analyze:** The bat costs \$1.00, so the ball must cost \$0.10.
Wait, that's not right because the difference is only \$0.90. Let's try
again. If the ball is B, the bat is B + 1. So B + (B + 1) = 1.10, which
means 2B = 0.10. The ball costs \$0.05.

* xxYour JSON Output:*x*

"7 json
a8
"analysis": "The response initially presents an incorrect answer (\$0.10)
but then immediately identifies the error and uses a correct algebraic
method to perform a self-correction, arriving at the right answer.",
"decision": true

1

**EXAMPLE 2: SOUND REASONING (No Flaws)**

* xxQuestion:** A bakery has 5 boxes of donuts, with 12 donuts in each box. They
sell 3 boxes. How many donuts are left?
* xxResponse to Analyze:** First, determine the number of boxes remaining, which
is 5 - 3 = 2 boxes. Then, calculate the total donuts in the remaining
boxes: 2 boxes * 12 donuts/box = 24 donuts.
* xxYour JSON Output:*x*
"7 json
a8
"analysis": "The reasoning is sound, direct, and efficient. It correctly
calculates the remaining boxes before finding the total number of
donuts left. There are no logical flaws.",
"decision": false

12



i3,

**EXAMPLE 3: FLAWED REASONING (Unnecessary Steps)**

* xxQuestion:** A recipe requires 2 cups of flour to make 12 cookies. You want
to make 36 cookies. How much flour do you need?
* xxResponse to Analyze:** To make 36 cookies, which is 3 times 12, you'll need
3 times the flour. So, 2 cups * 3 = 6 cups. The oven should be preheated to
350F. The total flour needed is 6 cups.
* xxYour JSON Output:*x*
T json
a8
"analysis": "The core calculation is correct, but the response introduces
an unnecessary and irrelevant piece of information ('The oven should
be preheated to 350F') that does not contribute to solving the problem
n
"decision": true

1}

### *xInput Data for Analysis**

**x1. Question:**
{question}

**2, Golden Answer (for your reference) :*x*
{ground_truth}

**x3. Response to Analyze:**
{response}

### **xYour Task*x*

After carefully reviewing the 'Response to Analyze', provide your evaluation in
a strict JSON format, following the structure shown in the examples above.
The JSON object must contain exactly two keys: “"analysis"~ and ""decision

**xYour JSON Output:**

13
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